Bitwise OperatorsBitwise operators allow evaluation and manipulation of specific bits within an integer.
Bit shifting in PHP is arithmetic. Bits shifted off either end are discarded. Left shifts have zeros shifted in on the right while the sign bit is shifted out on the left, meaning the sign of an operand is not preserved. Right shifts have copies of the sign bit shifted in on the left, meaning the sign of an operand is preserved.
Use parentheses to ensure the desired
precedence.
For example,
If both operands for the
If the operand for the
Both operands and the result for the
PHP's error_reporting ini setting uses bitwise values,
providing a real-world demonstration of turning
bits off. To show all errors, except for notices,
the php.ini file instructions say to use:
This works by starting with E_ALL:
00000000000000000111011111111111
Then taking the value of E_NOTICE...
00000000000000000000000000001000
... and inverting it via
Another way to accomplish that is using XOR (
error_reporting can also be used to demonstrate turning bits on.
The way to show just errors and recoverable errors is:
This process combines E_ERROR
00000000000000000000000000000001
and
00000000000000000001000000000000
using the OR (
Example #1 Bitwise AND, OR and XOR operations on integers
The above example will output: --------- --------- -- --------- result value op test --------- --------- -- --------- Bitwise AND ( 0 = 0000) = ( 0 = 0000) & ( 5 = 0101) ( 1 = 0001) = ( 1 = 0001) & ( 5 = 0101) ( 0 = 0000) = ( 2 = 0010) & ( 5 = 0101) ( 4 = 0100) = ( 4 = 0100) & ( 5 = 0101) ( 0 = 0000) = ( 8 = 1000) & ( 5 = 0101) Bitwise Inclusive OR ( 5 = 0101) = ( 0 = 0000) | ( 5 = 0101) ( 5 = 0101) = ( 1 = 0001) | ( 5 = 0101) ( 7 = 0111) = ( 2 = 0010) | ( 5 = 0101) ( 5 = 0101) = ( 4 = 0100) | ( 5 = 0101) (13 = 1101) = ( 8 = 1000) | ( 5 = 0101) Bitwise Exclusive OR (XOR) ( 5 = 0101) = ( 0 = 0000) ^ ( 5 = 0101) ( 4 = 0100) = ( 1 = 0001) ^ ( 5 = 0101) ( 7 = 0111) = ( 2 = 0010) ^ ( 5 = 0101) ( 1 = 0001) = ( 4 = 0100) ^ ( 5 = 0101) (13 = 1101) = ( 8 = 1000) ^ ( 5 = 0101)
Example #2 Bitwise XOR operations on strings
Example #3 Bit shifting on integers
Output of the above example on 32 bit machines: --- BIT SHIFT RIGHT ON POSITIVE INTEGERS --- Expression: 2 = 4 >> 1 Decimal: val=4 res=2 Binary: val=00000000000000000000000000000100 res=00000000000000000000000000000010 NOTE: copy of sign bit shifted into left side Expression: 1 = 4 >> 2 Decimal: val=4 res=1 Binary: val=00000000000000000000000000000100 res=00000000000000000000000000000001 Expression: 0 = 4 >> 3 Decimal: val=4 res=0 Binary: val=00000000000000000000000000000100 res=00000000000000000000000000000000 NOTE: bits shift out right side Expression: 0 = 4 >> 4 Decimal: val=4 res=0 Binary: val=00000000000000000000000000000100 res=00000000000000000000000000000000 NOTE: same result as above; can not shift beyond 0 --- BIT SHIFT RIGHT ON NEGATIVE INTEGERS --- Expression: -2 = -4 >> 1 Decimal: val=-4 res=-2 Binary: val=11111111111111111111111111111100 res=11111111111111111111111111111110 NOTE: copy of sign bit shifted into left side Expression: -1 = -4 >> 2 Decimal: val=-4 res=-1 Binary: val=11111111111111111111111111111100 res=11111111111111111111111111111111 NOTE: bits shift out right side Expression: -1 = -4 >> 3 Decimal: val=-4 res=-1 Binary: val=11111111111111111111111111111100 res=11111111111111111111111111111111 NOTE: same result as above; can not shift beyond -1 --- BIT SHIFT LEFT ON POSITIVE INTEGERS --- Expression: 8 = 4 << 1 Decimal: val=4 res=8 Binary: val=00000000000000000000000000000100 res=00000000000000000000000000001000 NOTE: zeros fill in right side Expression: 1073741824 = 4 << 28 Decimal: val=4 res=1073741824 Binary: val=00000000000000000000000000000100 res=01000000000000000000000000000000 Expression: -2147483648 = 4 << 29 Decimal: val=4 res=-2147483648 Binary: val=00000000000000000000000000000100 res=10000000000000000000000000000000 NOTE: sign bits get shifted out Expression: 0 = 4 << 30 Decimal: val=4 res=0 Binary: val=00000000000000000000000000000100 res=00000000000000000000000000000000 NOTE: bits shift out left side --- BIT SHIFT LEFT ON NEGATIVE INTEGERS --- Expression: -8 = -4 << 1 Decimal: val=-4 res=-8 Binary: val=11111111111111111111111111111100 res=11111111111111111111111111111000 NOTE: zeros fill in right side Expression: -2147483648 = -4 << 29 Decimal: val=-4 res=-2147483648 Binary: val=11111111111111111111111111111100 res=10000000000000000000000000000000 Expression: 0 = -4 << 30 Decimal: val=-4 res=0 Binary: val=11111111111111111111111111111100 res=00000000000000000000000000000000 NOTE: bits shift out left side, including sign bit Output of the above example on 64 bit machines: --- BIT SHIFT RIGHT ON POSITIVE INTEGERS --- Expression: 2 = 4 >> 1 Decimal: val=4 res=2 Binary: val=0000000000000000000000000000000000000000000000000000000000000100 res=0000000000000000000000000000000000000000000000000000000000000010 NOTE: copy of sign bit shifted into left side Expression: 1 = 4 >> 2 Decimal: val=4 res=1 Binary: val=0000000000000000000000000000000000000000000000000000000000000100 res=0000000000000000000000000000000000000000000000000000000000000001 Expression: 0 = 4 >> 3 Decimal: val=4 res=0 Binary: val=0000000000000000000000000000000000000000000000000000000000000100 res=0000000000000000000000000000000000000000000000000000000000000000 NOTE: bits shift out right side Expression: 0 = 4 >> 4 Decimal: val=4 res=0 Binary: val=0000000000000000000000000000000000000000000000000000000000000100 res=0000000000000000000000000000000000000000000000000000000000000000 NOTE: same result as above; can not shift beyond 0 --- BIT SHIFT RIGHT ON NEGATIVE INTEGERS --- Expression: -2 = -4 >> 1 Decimal: val=-4 res=-2 Binary: val=1111111111111111111111111111111111111111111111111111111111111100 res=1111111111111111111111111111111111111111111111111111111111111110 NOTE: copy of sign bit shifted into left side Expression: -1 = -4 >> 2 Decimal: val=-4 res=-1 Binary: val=1111111111111111111111111111111111111111111111111111111111111100 res=1111111111111111111111111111111111111111111111111111111111111111 NOTE: bits shift out right side Expression: -1 = -4 >> 3 Decimal: val=-4 res=-1 Binary: val=1111111111111111111111111111111111111111111111111111111111111100 res=1111111111111111111111111111111111111111111111111111111111111111 NOTE: same result as above; can not shift beyond -1 --- BIT SHIFT LEFT ON POSITIVE INTEGERS --- Expression: 8 = 4 << 1 Decimal: val=4 res=8 Binary: val=0000000000000000000000000000000000000000000000000000000000000100 res=0000000000000000000000000000000000000000000000000000000000001000 NOTE: zeros fill in right side Expression: 4611686018427387904 = 4 << 60 Decimal: val=4 res=4611686018427387904 Binary: val=0000000000000000000000000000000000000000000000000000000000000100 res=0100000000000000000000000000000000000000000000000000000000000000 Expression: -9223372036854775808 = 4 << 61 Decimal: val=4 res=-9223372036854775808 Binary: val=0000000000000000000000000000000000000000000000000000000000000100 res=1000000000000000000000000000000000000000000000000000000000000000 NOTE: sign bits get shifted out Expression: 0 = 4 << 62 Decimal: val=4 res=0 Binary: val=0000000000000000000000000000000000000000000000000000000000000100 res=0000000000000000000000000000000000000000000000000000000000000000 NOTE: bits shift out left side --- BIT SHIFT LEFT ON NEGATIVE INTEGERS --- Expression: -8 = -4 << 1 Decimal: val=-4 res=-8 Binary: val=1111111111111111111111111111111111111111111111111111111111111100 res=1111111111111111111111111111111111111111111111111111111111111000 NOTE: zeros fill in right side Expression: -9223372036854775808 = -4 << 61 Decimal: val=-4 res=-9223372036854775808 Binary: val=1111111111111111111111111111111111111111111111111111111111111100 res=1000000000000000000000000000000000000000000000000000000000000000 Expression: 0 = -4 << 62 Decimal: val=-4 res=0 Binary: val=1111111111111111111111111111111111111111111111111111111111111100 res=0000000000000000000000000000000000000000000000000000000000000000 NOTE: bits shift out left side, including sign bit Warning
Use functions from the gmp extension for
bitwise manipulation on numbers beyond See Also
|